Растворы для инъекций. Инфузионные растворы. Требования к инъекционным и инфузионным растворам 

  В соответствии с ГФ к лекарственным формам для инъекций относят: водные и масляные растворы, суспензии и эмульсии, стерильные порошки, пористые массы и таблетки, которые растворяют в стерильном растворителе непосредственно перед введением. Водные инъекционные растворы объемом 100 мл и более называют инфузионными.
Инфузионные растворы называют физиологическими, если они изотоничны, изоионичны и изогидричны (pH ~ 7,36) плазме кровй- Часто физиологическими называют растворы, которые хотя бы по одному из показателей соответствуют физиологической нор' ме, например, изотонический 0,9%-ный раствор натрия хлориди- Физиологические растворы способны поддерживать жизнедеятель
ность клеток и органов и не вызывать существенных сдвигов физиологического равновесия в организме.
физиологические растворы (жидкости), которые кроме вышеперечисленных показателей имеют вязкость, близкую плазме кро- в11 называют плазмозамещающами.
Из большого ассортимента групп инфузионных растворов в современных больничных аптеках готовят:
. растворы, регулирующие водно-электролитный баланс (ре- гидратирующие): изотонический, гипертонические натрия хлорида, Рингера, Рингера—Локка, ацесоль, дисоль, трисоль, квар- тасоль, хлосоль, лактосоль (раствор содержит хлориды натрия, калия, кальция, магния и натрия лактат);
  • растворы, регулирующие кислотно-основное равновесие (натрия гидрокарбоната и др.);
  • дезинтоксикационные растворы (натрия тиосульфата 30%-ный);
  • жидкости для парэнтерального питания (растворы глюкозы, растворы глюкозы с аскорбиновой кислотой и др.).

Растворы для инъекций в аптеках лечебных учреждений составляют около 80 % лекарственных препаратов индивидуального изготовления, в аптеках разных форм собственности — около 1 %. В подавляющем большинстве — это водные растворы лекарственных веществ.
По сравнению с другими изготовляемыми в аптеках лекарственными формами — растворы для внутреннего и наружного применения, порошки, мази, для которых лишь в отдельных случаях имеются фармакопейные статьи, составы практически всех растворов для инъекций и инфузий регламентированы. Следовательно, регламентированы способы обеспечения их стерильности и стабильности.
На современном этапе развития производства и аптечного изготовления инъекционных и инфузионных растворов возникла необходимость выполнения официальных требований к организации технологического процесса и контроля качества. Такие требования получили общераспространенное название «Правила правильного (надлежащего) производства» (Good manufacturing practices, GMP) и включают: требования к современной технологии производства; контроль качества лекарственных средств, Дисперсионных сред, вспомогательных веществ и лекарственных препаратов; требования к помещениям, оборудованию, персоналу.
Для обеспечения минимальной контаминации микроорганизмами растворы готовят в асептических условиях. Стерильные растворы должны изготавливать в специальных, так называемых чистых помещениях с многоступенчатой системой приточно-вытяж- Пой вентиляции. Воздух помещений должен соответствовать национальным стандартам (классам) чистоты.
Изготовленные инъекционные растворы должны быть прозрац ны, стабильны, стерильны и апирогенны, в ряде случаев — соответствовать специальным требованиям.
Успешное выполнение указанных требований в значительной степени зависит от научно обоснованной организации труда фар, мацевта и провизора-технолога.
Отсутствие механических включений. Механические включения могут быть представлены частицами резины, металла, стекла, волокнами целлюлозы, чешуйками лака, а также посторонними химическими и биологическими микрочастицами, поэтому в технологическом процессе велико значение правил асептики эффективности фильтрации и надежности методов контроля. Попадая в организм больного при инъекционном введении, механические включения вызывают различные патологические изменения.
Отсутствие механических включений в профильтрованных растворах для инъекций проверяют визуально после разлива во флаконы, а также после стерилизации. В растворах не должно быть посторонних частиц, видимых невооруженным глазом (50-мкм и больших). При использовании метода мембранной микрофильтрации возможно освобождение растворов от 0,2 —0,3 мкм микрочастиц.
Стабильность инъекционных растворов. Это неизменяемость составов и концентрации находящихся в растворе лекарственных веществ в течение установленного срока хранения. Стабильность инъекционных растворов в первую очередь зависит от качества исходных растворителей и лекарственных веществ. Они должны полностью отвечать требованиям ГФ ГОСТ.
Чем выше чистота исходных веществ, тем более стабильны получаемые из них растворы для инъекций.
Неизменность лекарственных веществ достигают соблюдением оптимальных условий стерилизации (температуры, времени), использованием допустимых консервантов, позволяющих получить эффект стерилизации при более низкой температуре, и применением стабилизаторов, соответствуюших природе лекарственных веществ.
Реакция среды водного раствора влияет не только на химическую стабильность, но и на жизнедеятельность бактерий. Сильнокислая и щелочная среда являются консервирующими.
Однако в очень кислых и щелочных средах многие лекарственные вещества подвергаются химическим изменениям (гидролизу, окислению, омылению), которые усиливаются при стерилизации. Кроме того, инъекции очень кислых и щелочных растворов болезненны, поэтому на практике для каждого лекарственного вещества подбирают с помощью стабилизаторов такое значение pH, которое позволяет сохранить их в неизменном виде после стери- лизации и при хранении.
Выбор стабилизатора зависит от физико-химических свойств пекарственного вещества. Условно вещества, растворы которых Vpe6yi°T стабилизации, делят на три группы:
V 1) соли сильных оснований и слабых кислот (растворы имеют слабощелочную или щелочную среду);
  1. соли сильных кислот и слабых оснований (растворы имеют слабокислую или кислую среду);
  2. легкоокисляющиеся вещества.

Для стабилизации лекарственных веществ, представляющих соли слабых оснований и сильных кислот, применяют 0,1 М раствор хлористоводородной кислоты обычно в количестве 10 мл на 1 л стабилизируемого раствора. При этом pH раствора смещается в кислую сторону (до 3,0). Объем и концентрация используемых растворов хлористоводородной кислоты могут варьировать в зависимости от свойств лекарственных вешеств.
В качестве стабилизаторов применяют и растворы щелочей (натрия гидрооксид, натрия гидрокарбонат), которые необходимо вводить в растворы веществ, представляющих соли сильных оснований и слабых кислот (кофеин-натрия бензоат, натрия тиосульфат и др.). В щелочной среде, создаваемой указанными стабилизаторами, реакция гидролиза этих веществ подавляется.
В ряде случаев для стабилизации легко окисляющихся веществ, например, аскорбиновой кислоты, в растворы приходится вводить антиоксиданты — вещества, прерывающие радикальный окислительный процесс.
В качестве антиоксидантов предложены производные фенола, ароматические амины, производные серы низкой валентности (натрия сульфит и метабисульфит, ронголит, тиомочевину и др.), токофероллы.
В качестве антиоксиданта непрямого (косвенного) типа действия применяют трилон Б. Косвенным его называют потому, что он сам не вступает в окислительно-восстановительный процесс, а связывает ионы тяжелых металлов, которые являются катализаторами окислительных процессов.
Количество антиоксидантов, если нет других указаний в частных статьях, не должно превышать 0,2 %.
Некоторые инъекционные растворы стабилизируют специальными веществами, например, растворы глюкозы. Сведения о составах стабилизаторов и их количествах приведены в соответствующих НД.
Стерильность и апирогенность. Стерильность инъекционных Растворов обеспечивается точным соблюдением асептических условий изготовления, применением установленного метода стерилизации (в том числе стерилизации фильтрованием), соблюдением температурного режима, временем стерилизации, в ряде случаев Путем добавления консервантов (антимикробных веществ).
Стерилизовать растворы следует не позже, чем через 3 ч после начала изготовления. Стерилизация растворов в емкости более 1 л не разрешается. Повторная стерилизация растворов запрещена.
Консервирование раствора не исключает соблюдения правил GMP. Оно должно способствовать максимальному снижению микробной контаминации лекарственных препаратов. Количество добавляемых консервантов, подобных хлорбутанолу, крезолу, фенолу, в растворах для инъекций должно быть не более 0,5 %. Консерванты применяют в лекарственных препаратах многодозового применения, а также однодозового — в соответствии с требованием частных фармакопейных статей.
Консерванты не должны содержаться в растворах для внутри- полостных, внутрисердечных, внутриглазных инъекций; инъекций, имеющих доступ к спинномозговой жидкости, а также при разовой дозе, превышающей 15 мл.
Апирогенность инъекционных растворов обеспечивается точным соблюдением правил получения и хранения апирогенной воды (Aqua pro injectionibus) и условий изготовления инъекционных растворов. Требование апирогенности в первую очередь относится к инфузионным растворам, а также к инъекционным при объеме одноразового введения 10 мл и более.
Пирогенные вещества — продукты жизнедеятельности и распада микроорганизмов (главным образом, грамотрицательных) относятся к соединениям типа липополисахаридов — веществ с большой молекулярной массой и размером частиц 0,05— 1,0 мкм.
Присутствие этих веществ в инъекционных растворах может вызвать у больного при введении в сосуды, спинномозговой канал пирогенную реакцию — повышение температуры тела, озноб, а высокое содержание привести к летальному исходу. Пирогенные реакции бывают при внутрисосудистых, спинномозговых и внутричерепных инъекциях.
Пирогенные вещества термостабильны, проходят через многие фильтры, освободить от них воду и инъекционные растворы термической стерилизацией практически невозможно, поэтому очень важна профилактика образования пирогенных веществ, которая достигается созданием асептических условий изготовления.
Проверке на апирогенность подвергают некоторые исходные вещества в виде растворов, например, 5%-ный глюкозы, изотонический натрия хлорида, 10%-ный желатина.
Контроль апирогенности воды для инъекций и растворов, из' готавливаемых в аптеках, проводят один раз в квартал.
Биологическое испытание на пирогенность воды для инъек' ций проводят на трех здоровых кроликах, которые содержатся е оптимальных условиях. Этот метод дорогой и трудоемкий, крой6
того, осложняется ндивидуальной чувствительностью животных fia пирогенные вещества.
Наиболее перспективным методом испытания на пирогенность можно считать лимулус-тест (LaL — тест). Лимулус-тест имеет преимущество по сравнению с испытанием на кроликах, но до сих пор в нашей стране это метод не является официальным и не применяется в аптеках.
Пирогены могут быть удалены: фильтрованием через мембранные фильтры; пропусканием через ионообменные смолы, с помощью обратного осмоса, гамма-облучения, дистилляции, ультрафильтрации и др.
Специальные требования. К отдельным группам инъекционных растворов предъявляют специальные требования:
изотоничность (определенная осмолярность);
изоионичность (определенный ионный состав, обусловленный состоянием плазмы крови);
изогидричность (определенное значение pH при различных состояниях организма — ацидоз или алкалоз);
изовязкость и другие физико-химические и биологические показатели, получаемые при введении в раствор дополнительных веществ.
Из перечисленных требований в аптечной практике чаще приходится решать вопросы, связанные с изотонированием (обеспечением изоосмолярности) инъекционных растворов. Изотонические растворы создают осмотическое давление, равное осмотическому давлению жидкостей организма: плазмы крови, слезной жидкости (субконъюнктивальные инъекции), лимфы и др. Осмотическое давление крови и слезной жидкости в норме составляет 7,4 атм. Растворы с меньшим осмотическим давлением — гипотонические, с большим — гипертонические.
Изотоничность (изоосмолярность) — весьма важное свойство инъекционных растворов. Растворы, отклоняющиеся от осмотического давления плазмы крови, вызывают резко выраженное ощущение боли. Иногда с терапевтической целью используют заведомо гипертонические растворы (например, для лечения отечности тканей применяют сильно гипертонические растворы глюкозы, глицерина).
Изотонические концентрации лекарственных веществ в растворах можно рассчитать разными способами. Наиболее простым является расчет с использованием изотонического эквивалента по натрия хлориду.
Например, 1,0 г безводной глюкозы по осмотическому эффекту эквивалентен 0,18 г натрия хлорида. Это означает, что г безводной глюкозы и 0,18 г натрия хлорида изотонируют °Динаковые объемы водных растворов в одинаковых условиях (см. Гл-13). 

Источник: Краснюк И. И., «Фармацевтическая технология: Технология лекарственных форм» 2004

А так же в разделе «  Растворы для инъекций. Инфузионные растворы. Требования к инъекционным и инфузионным растворам  »