Механизмы молекулярной самозащиты клетки. Системы репарации ДНК

  Биохимики и молекулярные биологи, изучающие структуры клетки или процессы, происходящие в ней, нередко сравнивают клетку с биохимической фабрикой. Однако фабрика эта очень необычна. Действительно сопоставим, например, генетическую информацию ДНК с программой технологических процессов, заложенной в системе управления фабрикой (будем считать, что это программа вычислительного комплекса). Но мы теперь знаем, что в ДНК спонтанно с большой частотой возникают различные повреждения, причем многие из них вызываются   продуктами   нормального   метаболизма   —   веществами,   необходимыми   для
жизнедеятельности клетки.
Таким образом, если продолжать аналогию клетки с биохимической фабрикой, то нельзя не увидеть одну существенную отличительную особенность: программа работы этой фабрики постоянно разрушается продуктами ее собственного производства. И нормально функционировать такая фабрика (например, в  течение сроков, сопоставимых со временем, затрачиваемым на ее создание) может лишь в том случае, если в ней имеются "сверхпрограмма" и средства восстановления всех программ работы фабрики.
В клетке действительно имеются механизмы и даже системы механизмов для ремонта поврежденных генетических структур. Схема работы наиболее изученного — эксцизионного механизма репарации представлена на рис. 6. Один из интереснейших механизмов репарации ДНК, открытых в последние годы, — устранение из ДНК гуанинов, алкилированных по 6-му кислородному атому. Особенность этой системы репарации ДНК состоит в ее адаптивности, т. е. ее активность во многих клетках увеличивается в условиях, когда возрастает число повреждений, устраняемых ею. Поскольку такие повреждения с относительно большой частотой приводят к мутации и трансформации клеток, то рассматриваемую систему репарации ДНК считают антимутагенной и антиканцерогенной. В процессе такой репарации "лишняя" метильная группа гуанина двойной спирали ДНК переносится на цистеиновый остаток фермента — акцепторного белка. Происходит полное восстановление исходной структуры остатка гуанина в ДНК, но сам фермент инактивируется (см. также с. 203).
В начале 80-х годов автор этих строк теоретически предсказал, что образование О6- метилгуанина в ДНК может происходить вследствие реакции ДНК с нормальным метаболитом, необходимым всем клеткам для осуществления различных физиологических функций — S- аденозилметионином. Иными словами, определенное количество повреждений ДНК рассматриваемого типа неизбежно образуется и при физиологических условиях. С этим обстоятельством, вероятно, и связана способность клеток развивать реакцию, так сказать, самоадаптации (т. е. реакцию защиты ДНК от спонтанного физиологического повреждения ДНК "своими" необходимыми клетке метаболитами).
О роли функции рассматриваемого фермента в жизнестойкости и долголетии млекопитающих свидетельствует, например, следующее. Исходный уровень его активности сначала был изучен в печени крыс А. Е. Пегом из отдела физиологии и исследований рака Пенсильванского университета (США). А пять лет спустя советскими онкологами (А. Я. Лихачевым и другими из НИИ онкологии им. проф. Н. Н. Петрова Минздрава СССР) были опубликованы данные об активности этого фермента в печени человека. Сопоставление данных этих различных работ показывает, что способность устранить премутагенные и преканцерогенные повреждения ДНК, индуцируемые алкилирующими нитрозаминами, в клетках человека примерно в 10 раз больше соответствующей способности клеток печени крыс.
Рассмотренными процессами репарации ДНК и катализируемыми ими ферментами не исчерпывается регуляция на самом Деле гораздо более сложных механизмов залечивания генетических ферментов. В частности, в таких механизмах принимают участие и ферменты, изменяющие структуру ДНК на уровнях ее организации, более высоких, чем первичная. Один из этих ферментов — топоизомераза, название которого подчеркивает и его предназначение — менять топологические свойства ДНК.
Топоизомераза — очень важный фермент, нужный клетке не только для репарации ДНК, но и для регуляции других функций генетического вещества, включая редупликацию генов и их транскрипцию. (Роль такого рода ферментов в репарации ДНК и изменение их активности в процессе канцерогенеза были предсказаны в СССР еще в начале 70-х годов). Но особенно интересны данные, полученные в экспериментах с культивируемыми клетками человека.
Так вот, когда сравнили топоизомеразы в клетках здоровых доноров и больных анемией Фанкони (у последних увеличена нестабильность хромосом, снижена продолжительность жизни и имеются некоторые симптомы преждевременного старения, включая такой грозный, как увеличенная предрасположенность к опухолевым заболеваниям), то оказалось: при этой болезни резко изменено внутриклеточное распределение рассматриваемого фермента. В клетках здоровых людей фермент сосредоточен в основном в их ядрах, а в клетках больных людей активность топоизомеразы в ядрах мала, но она велика в цитоплазме. Возможно, это связано с тем, что вследствие мутации того или иного гена (в частности, гена, кодирующего самую топоизомеразу), фермент, будучи синтезированным в цитоплазме, затем не может быть доставлен в ядро. Так полагают авторы, обнаружившие различия в распределении топоизомеразы между клетками здоровых и больных анемией Фанкони людей.
Но более вероятным кажется другое объяснение этого различия. В клетках больных анемией Фанкони увеличена выработка супероксидного радикала и(или) генерируемого с его участием Н2О2, а это и приводит к увеличенной нестабильности хромосом. Об этом свидетельствует, в частности, тот факт, что при добавлении в среду роста клеток этих больных супероксиддисмутазы или каталазы частота спонтанных и индуцированных хромосомных аберраций "нормализуется". В связи с такими изменениями метаболизма, очевидно, и нарушается распределение топоизомераз. Но этот фермент, как считают исследователи, причастен к точности репарации ДНК и к подготовке ДНК к редупликации, и снижение его активности, вероятно, приводит к нарушению обоих процессов.
Действительно уже относительно давно было установлено, что процесс репликации ДНК в клетках больных с нестабильностью хромосом изменен. А в последние годы обнаружена и еще одна особенность этого процесса в таких клетках: радиочувствительность синтеза ДНК в них значительно снижена. Так, если уже при относительно небольших дозах облучения (меньших, чем летальные) в нормальных клетках синтез ДНК резко тормозится, то в клетках больных с синдромом нестабильности ДНК этого не наблюдается. Но ведь облучение индуцирует в ДНК различные повреждения, которые в норме должны быть залечены, причем точность (завершенность) этого процесса проверяется с помощью топоизомераз. Лишь после этого, наверное, начинается синтез ДНК. С такими процессами, вероятно, и связана задержка синтеза ДНК в облученных клетках.
Но при снижении активности топоизомераз и наличии каких-то других дефектов в механизмах репарации и репликации ДНК клетками "тратится" меньше времени на контролирующие целостность ДНК процессы.
Таким образом, исходя из предположения об участии топоизомеразы в проверке точности (или правильнее — полноты) репарации спонтанных и радиационных повреждений ДНК можно объяснить различные молекулярно-генетические особенности клеток больных с нестабильностью хромосом.
Теперь вопрос можно поставить шире: не является ли нарушение структуры, синтеза или распределения топоизомеразы одним из молекулярных механизмов преждевременного старения? И не являются ли возрастные изменения репликации ДНК средством такого нарушения? Дефект репликации ДНК наблюдали в фибробластах людей, страдающих синдромом Вернера или прогерией взрослых (одно из генетически детерминированных заболеваний, обозначаемых и как синдром преждевременного старения). Этот факт свидетельствует о том, что ответ на оба вопроса, наверное, должен быть положительным.
Но как же изменяется способность клеток к репарации ДНК в процессе нормального, физиологического старения? В обширной литературе на рассматриваемую нами тему очень мало работ, освещающих исследования, в которых проблему возрастных изменений репарации ДНК
изучали бы на клетках человека, стареющих не in vitro, a in vivo. Хотя "модель" можно исследовать подробнее и с меньшими усилиями, чем само явление, но все же интересно знать, как происходит старение клеток в естественных условиях.
Прежде всего приведу доказательство уменьшения способности к репарации однонитевых разрывов ДНК у фибробластов взрослых людей по  сравнению с эмбриональными фибр об ластами. Способность к репарации ДНК эмбриональных диплоидных фибробластов медицинских абортусов и фибробластов, полученных из кожных биопсий здоровых доноров в возрасте от 25 лет до 91  года, А. Н. Хохлов и автор этих строк (работа выполнялась при поддержке Г. Д. Бердышева из КГУ и К. Н. Гринберга из Института медицинской генетики АМН СССР) определяли методом седиментации в градиенте щелочной сахарозы, о котором я уже рассказывал. Результаты,  полученные при использовании этой методики,  интерпретируются достаточно определенно: повреждение ДНК (радиацией или химическими мутагенами), приводящее к замедлению скорости седиментации ДНК, означает накопление в ней разрывов или других модификаций (щелочно-лабильных связей), которые в щелочной сахарозе трансформируются в разрывы ДНК. Ускорение седиментации ДНК поврежденных клеток в процессе их инкубации при 37 °C интерпретируется как показатель способности клеток устранять повреждения ДНК: в основном однонитевые разрывы и щелочно-лабильные связи.
При отработке условий эксперимента (количество наносимых на градиент клеток, продолжительность их лизиса, скорость центрифугирования) были исключены все возможные артефакты метода. Это позволило максимально увеличить воспроизводимость результатов и установить, что хотя  сразу после облучения  седиментаграммы ДНК эмбриональных и "взрослых" фибробластов практически одинаковы, в процессе инкубации скорость седиментации ДНК в эмбриональных клетках возрастает несколько быстрее.
Анализ данных многих серий опытов по сравнительному исследованию ДНК эмбриональных и "взрослых" фибробластов при 37 °C показывает, что и за 30 минут, и за 1 час инкубации облученных "взрослых" клеток в их ДНК устраняется; меньше повреждений, чем за тот же промежуток времени в ДНК эмбриональных клеток,
Ранее другими авторами был проведен целый ряд исследований, посвященных изучению изменений способности к репарации различных повреждений ДНК при "старении" in vitro культивируемых диплоидных фибробластов. Эти данные показывают, что репарация индуцированных радиацией однонитевых разрывов и щелочно-лабильных связей нарушается лишь в клетках последних пассажей, когда их жизнеспособность значительно снижена и большая часть клеток в популяции теряет способность к делению.
Другой подход, использованный нами для изучения возрастных изменений репарации ДНК, состоял в сравнении интенсивностей репаративного синтеза ДНК в клетках животных (крыс) различного возраста и в фибробластах человека, культивируемых в течение длительного времени. О результатах, полученных при исследовании спонтанного репаративного синтеза ДНК в клетках головного мозга, было рассказано в предыдущей главе. То были результаты исследования интактных животных.
Но кроме того, в клетках головного мозга взрослых крыс была обнаружена способность к внеплановому синтезу ДНК, индуцированному (вероятно, репаративному) гамма-излучением. Однако когда такие же опыты были поставлены нами на 23-26-месячных крысах, то у них индуцированного излучением внепланового синтеза ДНК обнаружить не удалось. Таким образом, пока мы имеем доказательство способности к обоим репаративным синтезам ДНК — спонтанному и индуцированному — только в нервных клетках головного мозга молодых животных.
Кстати, наличие такой  способности  заставляет  с осторожностью относиться к  широко
разрекламированным, сенсационным результатам исследований Д. Пейтона и Ф. Нотебома из Рокфеллеровского университета, наблюдавших обмен ДНК в нервных клетках головного мозга взрослых животных (они исследовали канареек) и на основании такого обмена заключивших, что нервные клетки могут разрушаться и замещаться в процессе деления оставшихся. Возможно, однако, что обмен ДНК, исследованный американскими авторами, был обусловлен репаративным синтезом ДНК.
Чтобы выяснить, изменяется ли в процессе старения клеток человека их способность к репарации повреждений ДНК, диплоидные клетки, совершившие различное число делений in vitro, облучали УФ-светом и определяли интенсивность протекающего у них синтеза ДНК, связанного с репарацией повреждений ДНК. Доказательством включения тимидина как следствия внепланового (репаративного) синтеза ДНК являлся, в частности, тот факт, что его интенсивность определялась величиной дозы УФ-облучения. При облучении клеток в относительно небольшой дозе — 25 эрг/мм2 интенсивность репаративного синтеза ДНК в "старых" клетках (40-го пассажа) была статистически достоверно меньше интенсивности репаративного синтеза ДНК в "молодых" клетках (26-го пассажа).
Но конечно, данные, полученные в опытах с клетками, стареющими in vitro, надо осторожно экстраполировать на ситуацию в организме. Поэтому больший интерес представляет вопрос о том, как изменяется репаративный синтез при старении клеток организма. Поскольку, как будет объяснено ниже, это важный для понимания механизмов старения и долголетия вопрос, то основные из имеющихся на этот счет фактов, опубликованных в последние годы (1984–1985), мы теперь рассмотрим.
Е. Ковакс с соавторами из лаборатории генетики человека в Базеле изучили спонтанный и индуцированный УФ-излучением репаративный синтез в лимфоцитах 38 мужчин и 17 женщин, которые были разделены на две группы: 17–39 лет и 44–74 года. Они установили, что интенсивность спонтанного репаративного синтеза ДНК в лимфоцитах людей 1-й группы была меньше, чем в лимфоцитах 2-й. Однако значительных различий в интенсивности индуцированного репаративного синтеза ДНК они не обнаружили, хотя и отметили, что клетки молодых людей менее гетерогенны по этому показателю.
А группа исследователей из Колумбийского университета в Нью-Йорке исследовала интенсивность репаративного синтеза ДНК клеток эпидермиса, полученных от людей различного возраста. Эту интенсивность оценивали методом радиоавтографии в клетках, облученных УФ-лучами. Было обнаружено, что активность процесса репарации ДНК по мере увеличения возраста доноров уменьшается на 50 %, причем с возрастом увеличивается доля клеток с низкой интенсивностью репаративного синтеза.
Наблюдаемые изменения нельзя объяснить ни нарушением проницаемости клеток для предшественников ДНК, ни изменением размера ядра. Приведенные данные однозначно свидетельствуют о нарушении с возрастом функции самих систем репарации ДНК.
Ряд исследований был выполнен с клетками, полученными от грызунов. В  частности, ученые из медицинского колледжа Питтсбургского университета (США) установили: процесс репаративного синтеза ДНК после облучения УФ-светом клеток печени (гепатоцитов) 2-3- месячных крыс протекает активнее, чем в тех же клетках старых (16–20 месяцев) крыс.
По данным Ганса Ниедермуля с соавторами, способность к эксцизионной репарации клеток крыс в процессе их старения уменьшается. Она была снижена в клетках почти всех исследованных органов 28-месячных крыс по сравнению с клетками 9- и 18-месячных независимо от того, чем вызывали повреждения ДНК: 4-нитрозметилмочевиной, метил- метансульфонатом, 4-нитрохинолин-1-оксидом или гамма-излучением.
Я              перечислил              все              исследованные              факторы,              не              только              чтобы              подчеркнуть              общие
закономерности, но и отметить, что все эти факторы являются канцерогенными или потенциально канцерогенными. Это обстоятельство мы учтем ниже при рассмотрении вопроса о причинах резкого учащения в процессе старения животных и человека случаев развития у них злокачественных  новообразований.
Характер изменения репаративного синтеза ДНК при старении соответствует характеру изменения активности генов в синтезе РНК, т. е. нарушение репарации ДНК и вследствие этого
  • накопление повреждений ДНК в определенных генах приводят к нарушению функции этих генов. Однако возможно, что обе функции ДНК — синтез РНК и способность к репарации ДНК
  • нарушаются по одной или нескольким общим причинам, например вследствие компактизации ДНК или хроматина в процессе старения. То, что в результате этого репарируемость (или, если воспользоваться термином из теории надежности технических систем, — ремонтопригодность) генов  будет уменьшаться, не подлежит сомнению. Ведь в результате компактизации ДНК доступность поврежденного участка ДНК к препарирующим ферментам должна уменьшаться. Но в то же время целый ряд наблюдений свидетельствует: в процессе старения клеток в них возрастает количество "плотно упакованной" ДНК. У такой ДНК, кроме "ремонтопригодности", может снижаться способность к редупликации и к синтезу РНК. Таковы звенья цепи молекулярных изменений, определяющих скорость старения. Однако на самом деле процесс "старения" генетического вещества еще сложнее.

Выше расчетным путем была оценена скорость спонтанного непрограммированного метилирования ДНК. Была рассмотрена скорость лишь неэнзиматического метилирования, и она оказалась очень большой. Но если это так, то и система спонтанной репарации ДНК в неповрежденной клетке должна работать с такой скоростью, чтобы из ДНК в течение часа выщеплялись многие десятки метильных групп (иначе их содержание в ДНК быстро достигло бы уровня, не совместимого с жизнью клетки). Процесс репарации ДНК такой интенсивности можно зарегистрировать либо физико-химическими, либо более чувствительными иммунологическими методами анализа. Но к сожалению, пока он полностью не исследован.
Далее теоретический биофизический анализ ДНК показывает: в  клетках с относительно большой частотой (по сравнению с частотами спонтанных мутаций) протекает процесс спонтанного дезаминирования цитозина. Если бы не было систем репарации этого типа спонтанных повреждений ДНК, то количество предмутационных изменений, ведущих к транзициям ЦГ > АТ, составило бы в расчете на клеточный цикл (его минимальная продолжительность у клеток млекопитающих составляет примерно сутки) порядка 10-5-10-4 в расчете на 1 сайт, тогда как экспериментально определяемые частоты порядка 10-8 и менее. Следовательно, мы должны заключить, что в клетках постоянно протекают не только процессы спонтанного дезаминирования цитозина, но и репарации возникающих в результате этого изменений структуры ДНК.
При действии на различные клетки относительно небольших концентраций некоторых химических мутагенов в них можно определить возрастание устойчивости к этим мутагенам, связанное с активацией (индукцией, синтезом) ферментов с защитными (репарирующими) свойствами. Мы получили доказательство, что небольшие дозы УФ-излучения или даже тепловое воздействие определенной интенсивности и длительности могут активировать системы репарации ДНК в некоторых клетках. Другие авторы также получали факты, свидетельствующие об активной защите клетки, об их "приспособляемости" к окружающей среде и на уровне репарации ДНК.
Существуют и другие, кроме репарации ДНК, способы защиты генома, и о них еще будет рассказано. Сейчас же отмечу, что даже в устройстве генома клеток человека можно усмотреть "стремление" природы в процессе эволюции увеличить стабильность.
Основываясь на биологическом значении нестабильности ДНК, роли ДНКазы в механизмах этой нестабильности, анализе закономерностей взаимодействия Т-лимфоцитов-киллеров ("убийц") с клетками-мишенями, автор этой книги обосновал предположение, что Т-лимфоциты убивают свою жертву путем инъекции в нее ДНКаз. Это предположение было опубликовано в начале 1985 года в отечественном журнале "Успехи современной биологии". А в середине того же года группа американских авторов (В. Е. Мунгер с соавторами) сообщила, что им удалось очистить гранулы, которые вводят цитотоксические Т-лимфоциты в клетку-мишень. Такие гранулы содержат цитолизины, с помощью которых в мембране клеток-мишеней образуется "дырка", и в нее поступает ДНКаза, содержащаяся в большом количестве в этих гранулах. В Т- лимфоцитах, не обладающих цитотоксической активностью, содержание ДНКаз значительно меньше.
Теперь вспомним, что макрофаги убивают бактерии посредством действия на них активных форм кислорода: супероксидного радикала и образуемых при его участии радикала ОН· и Н2О2 (также содержащих кислород в полувосстановленной форме). Этот класс веществ, конечно, резко отличается от ДНКаз. Но у них есть и общее свойство — все они являются эндогенными генотоксическими факторами, используемыми одними клетками для разрушения других.
У строгого читателя может возникнуть вопрос: а какое отношение рассказ о механизмах разрушения одних клеток другими имеет к старению? Прежде чем ответить, напомню, что способность определенных клеток пожирать и убивать другие клетки была открыта И. И. Мечниковым — великим русским биологом, первым из отечественных ученых получившим Нобелевскую премию по биологии и медицине. Так вот, И. И. Мечников этим своим открытием не только заложил основы учения о клеточном иммунитете (важнейшей области современной биологии и медицины), но и сформулировал фактически первую гипотезу о механизмах старения человека. И. И. Мечников предположил, что макрофаги могут "пожирать" также клетки собственных органов, например (и это он считал особенно существенным в механизмах старения человека) незаменимые (неделящиеся) клетки в процессе старения органов. Гипотеза И. И. Мечникова, конечно, теперь имеет прежде всего исторический интерес. Однако она же может стать основой для более совершенных гипотез, учитывающих роль иммунологических механизмов (или в более широком смысле — межклеточных взаимодействий) в старении организма.
Ведь получается, что защитные устройства сами участвуют в механизмах старения. Более того, если принять во внимание, что активные формы кислорода и ДНКазы не только "орудия агрессии" клеток, но и мощные эндогенные генотоксические факторы, т. е. что они механизмы "спонтанного" повреждения ДНК, определяющего старение, то станет очевидной взаимосвязь механизмов защиты организма (или агрессии, если рассматривать межклеточные отношения) и старения. Судя по всему, системы транспорта электронов в древних клетках и весь их метаболизм формировались и с учетом их защиты от других клеток или (что примерно то же самое для клеток) с учетом необходимости их агрессивного поведения.
На более поздних этапах эволюции, когда сформировались высшие организмы, эта функция перестала быть столь существенной, и теперь молекулярные средства защиты и нападения стали и механизмами старения и клеток, и всего организма. Более того, именно эти механизмы могут быть основной причиной гибели клеток и организма при действии на него экстремальных факторов.
Действительно анализ многочисленных фактов показывает, что под влиянием различных физических и химических факторов и даже вирусов в клетках происходит возрастание активных форм кислорода (иногда говорят об окислительном стрессе) и(или) ДНКаз. Особенно подробно изучена роль последних в механизмах гибели лимфоцитов после облучения организма
ионизирующими излучениями. И здесь надо отметить выдающийся вклад радиобиологов, особенно отечественных (Н. В. Ермолаева, А. М. Кузин, В. К. Мазурик, Н. И. Рябченко, С. Р. Уманский, Г. Е. Фрадкин, К. П. Хансон, И. В. Филиппович) и чехословацких (М. Скалка с соавторами). Именно благодаря их работам концепция программированной гибели клеток и кардинальной роли ДНКаз(ы) в этой гибели получила начиная с середины 70-х годов мощное развитие. Полагают, что в радиочувствительных клетках (лимфоцитах) в результате облучения ДНКазы (во всяком случае, одна из них, стимулируемая Са2+) активируются и вызывают разрушение ДНК этих клеток.
Еще одна и, возможно, самая яркая грань взаимосвязи механизмов повреждения и защиты на одном и том же уровне — ДНК обнаруживается, если принять во внимание, что ДНКазы участвуют и в индукции, и в репарации повреждений ДНК.
Двойные разрывы ДНК могут возникнуть по крайней мере двумя путями: через одновременное образование двух однонитевых разрывов, каждый из  которых локализован в одной из комплементарных цепей в пределах участка ДНК длиной около 10 нуклеотидов, или через последовательное образование сначала одного разрыва, а затем, если первый не успел репарироваться, — другого.
Исходя из оценок частот образования однонитевых разрывов, сделанных в предыдущей главе, можно заключить, что без участия ферментов оба пути спонтанного образования двунитевых разрывов реализуются исключительно редко. Очень вероятно, что механизм образования двунитевых разрывов в ДНК включает действие ДНКазы на интактную ДНК в участках (в пределах 10 нуклеотидов), расположенных напротив участка комплементарной цепи, содержащей однонитевый разрыв (и следовательно, в локально денатурированном участке двойной спирали ДНК). Действительно в различных клетках животных и человека найдены эндонуклеазы, которые специфичны по отношению к однонитчатой ДНК, т. е. "узнающие" места расплетения ДНК, которые могут образоваться в месте образовавши в ДНК однонитевого разрыва или локального расплетения нативной ДНК вследствие флуктуации в распределении тепловой энергии.
Обычно полагают, что нахождение эндонуклеазами мест частичной денатурации ДНК — это              и                            есть              механизм              узнавания              различных              повреждений                            ДНК              этими              ферментами, катализирующими первый этап репарации ДНК — инцизию. Следовательно, эти же ферменты могут расщеплять ДНК и в участках локального расплетения двойной спирали — вследствие флуктуации в распределении тепловой энергии. Но кроме того, если эти ферменты ошибутся и индуцируют разрыв в противоположной цепи, содержащей частично расплетенный участок после образования однонитевого разрыва, то это приведет и к образованию двунитевого разрыва. Таким              образом,              два              противоположных              процесса              (развитие              первичных              спонтанных повреждений ДНК и начальные этапы их репарации) катализируются одним и тем же классом ферментов — ДНКазами. И только специфические эндонуклеазы могут сделать выбор между
двумя этими процессами (и то не всегда точно).
Что касается экзонуклеаз, то, вероятно, одни и те же ферменты могут катализировать и репарацию ДНК, и ее деградацию. И следовательно, только изучая последующие молекулярные события, можно решить, каково биологическое значение энзиматической деградации ДНК. Более того, биологическое значение деградации даже целых генов может быть двояким: или их повреждение, или освобождение генома от ненужных "использованных" генов.
Возвращаясь к проблеме изменения процессов репарации при старении, мы теперь видим, что пока изучены лишь немногие из ее аспектов. Я подчеркиваю это, потому что обилие фактов по этой проблеме создало иллюзию ее полной изученности даже у специалистов. Так, на симпозиуме по генетике старения, состоявшемся в ноябре 1984 года, один из очень известных
наших биогеронтологов заключил свой доклад предположением, что, наверное, теперь мы уже почти все знаем о механизмах репарации и об их изменении при старении. Однако на самом деле ситуацию можно охарактеризовать следующим образом: многие звенья механизмов регуляции репарации ДНК и причины их изменения при старении достаточно детально не исследованы, а о некоторых свойствах репарации ДНК мы можем только догадываться. Но одно заключение все же можно сделать: способность клеток к репарации повреждений ДНК, вызванных облучением, особенно облучением УФ-лучами, в процессе старения, как правило, снижается.

Источник: Виленчик Михаил Маркович  , ««Биологические основы старения и долголетия» Издание 2-е переработанное и дополненное  » 1987

А так же в разделе «  Механизмы молекулярной самозащиты клетки. Системы репарации ДНК »