Глава II ОБЩАЯ ХАРАКТЕРИСТИКА ГЕМОТРАНСФУЗИОННЫХ СРЕД И МЕТОДЫ ИХ КОНСЕРВИРОВАНИЯ

  В настоящее время врач имеет возможность использовать многочисленные гемотрансфузионные среды (табл. 2), которые должны назначаться в зависимости от показаний при той или иной патологии.
  1. КЛАССИФИКАЦИЯ ТРАНСФУЗИОННЫХ СРЕД

Консервированная кровь в недалеком прошлом являлась основной транс- фузионной средой, однако в настоящее время она применяется главным образом для получения из нее путем фракционирования клеточных и белковых компонентов (табл. 2).
  1. КОНСЕРВИРОВАННАЯ КРОВЬ

Консервированная кровь — трансфузионная среда, представляющая собой сложную систему белков и клеточных, форменных элементов (эритроцитов, тромбоцитов и лейкоцитов), взвешенных в плазме, содержащей консервирующий раствор (гемоконсервант), предотвращающий свертывание крови и нарушение ее функциональной полноценности. Методы консервирования крови позволяют создавать условия для ее сохранения в течение длительного времени в полноценном состоянии, пригодном для трансфузии. Существуют 2 метода консервирования и хранения крови:
  1. в жидком состоянии при температуре выше О °С;
  2. в замороженном твердом состоянии при температуре ниже О °С (вплоть до ультранизких, обеспечивающих многолетнее хранение эритроцитов).

Известно, что у здорового человека срок жизни эритроцитов составляет 100—120 дней. Кровь, помещенная в искусственную среду гемоконсерванта, претерпевает целый ряд биохимических, морфологических, физико-химических и реологических изменений, связанных в основном с обменными процессами, происходящими в клетках. Изменения и повреждение эритроцитов в процессе консервирования крови начинаются с момента ее заготовки. В начальном периоде, когда донорская кровь попадает в пластикатный контейнер с консервирующим раствором, происходит ее закисление до значений pH 7,0—7,2.
Изменения морфофункциональных свойств эритроцитов при хранении могут быть необратимыми и обратимыми. К необратимым нарушениям относятся уменьшение на 80—90% концентрации АТФ в эритроцитах, проникновение внутрь клетки Са, потеря липидов (из клеточной мембраны) и поверхностных рецепторов для связывания иммуноглобулинов, сфероци-

Классификация трансфузионных сред
Таблица 2

Консервированная кровь

Кровезаменители

Клеточные
компоненты

Плазма

Препараты плазмы

Препараты гемодинамического, противошокового, реологического действия и для восполнения ОЦК

Препараты
дезинтоксика-
ционного
действия

Препараты для парентерального питания

Регуляторы водно-солевого и кислотноосновного равновесия

«Модифицированная» кровь
Эритроцитная
масса
Эритроцитная
взвесь
Эритроцитная масса, обедненная лейкоцитами и тромбоцитами
Эритроцитная масса, размороженная и отмытая
Концентрат
тромбоцитов
Концентрат
лейкоцитов

Плазма
нативная
Плазма свежезамороженная
Плазма антиге- мофильная
Плазма
иммунная
Плазма анти-
стафилакок-
ковая
Плазма лиофи- лизированная

Комплексного действия
  • альбумин (5, 10,

20% раствор)
  • протеин

Гемостатического действия
  • криопреципитат
  • концентрат VIII фактора
  • протромби новый комплекс (PPSB)
  • фибриноген
  • фибринолизин
  • тромбин
  • гемостатическая губка

Иммунологического
действия
  • гамма-глобулин
  • иммуноглобулины: антирезусный (RhoD), антисгафилакокковый, противостолбнячный иммуноглобулин для внутривенного введения
  • Растворы декст- рана (полиглюкин, полиглюсоль, поли- фер, реополиппо- кин, рондекс, мак- родекс), реоглюман, полиоксидин, поли- висолин
  • Гидроокси этил- крахмал (волекам, поливер, лонгасте- рил)
  • Растворы желатина (желатиноль, гемжель, плазма- жель)
  • Растворы солевые (Рингер-лакгат, лак- тасол и др.)
  • Гемодез (неогемодез), гемо- дез-Н, неоком- пенсан
  • Полидез, глюконеодез, энтеродез, лакгопро- теин
  • Белковые гидролизаты (гидролизат казеина, гидролизин, фибри- носод, аминопеп- тид, амикин, ами- нозол, амиген, аминокровин)
  • Аминокислотные смеси (поли- амин, альвезин, аминофузин, ами- ностерил, нефра- мин)
  • Жировые эмульсии (липофундин, интралипид, липо- венол)
  • Растворы сахаров (глюкоза, ком- бистерил, глюко- стерил)
  • Солевые растворы (хлорид натрия, глюкоза, лактасол, мафу- сол, лактопротеин, раствор Гартмана, Рингер-лакгат)
  • Растворы «дисоль», «грисоль», «ацесоль», «квар- тасоль», трисамин, димефосфан

тоз, гемолиз. Обратимыми изменениями можно считать потерю АТФ до 50— 70%, значительное снижение содержания 2,3-ДФГ, выход ионов калия из клеток, наличие тутовых форм эритроцитов, потерю агглютинабельности эритроцитов.
Основной функцией эритроцитов является обеспечение связывания гемоглобина с кислородом в легких, транспорт кислорода и передача его тканям. Эритроцит является прекрасной моделью, на которой ясно виден один из основных биологических законов — взаимосвязь структуры и функции. Во время хранения крови в эритроцитах продолжают происходить процессы обмена веществ.
Для поддержания структуры эритроцита при хранении необходимо наличие основного субстрата метаболизма — глюкозы. При консервировании происходит непрерывное накопление конечного продукта гликолиза — молочной кислоты, что приводит к закислению крови — снижению pH и ухудшению биохимического статуса клеток. Однако до определенного времени красные клетки крови могут компенсировать этот процесс и синтезировать необходимое количество АТФ. К 21-му дню хранения в эритроцитах крови, консервированной на растворе глюгицир, в среднем сохраняется 60—70% АТФ, что коррелирует с их 70% приживаемостью в кровяном русле реципиента. Измеренный с применением радиоактивной метки Сг51 этот показатель приживаемости является общепризнанным критерием пригодности эритроцитов для трансфузий.
Для поддержания кислородтранспортной функции эритроцитов предполагается, что ведущее значение имеет другой промежуточный компонент гликолиза — 2,3-ДФГ. Он является активным регулятором сродства гемоглобина к кислороду и отдачи кислорода тканям. Судят о сродстве гемоглобина к кислороду по положению диссоциационной кривой оксигемоглобина, которое находится в обратной зависимости от концентрации 2,3-ДФГ в эритроците в свободном и связанном с гемоглобином состоянии: при низкой концентрации 2,3-ДФГ в эритроците сродство гемоглобина к кислороду повышено, при этом диссоциация оксигемоглобина и передача кислорода тканям затрудняются; при высокой его концентрации гемоглобин слабо связан с кислородом, и он быстрее высвобождается, ткани легче извлекают кислород из его комплекса с гемоглобином.
Таким образом, кислородтранспортная функция эритроцитов, по всей вероятности, тесно коррелирует и зависит во многом от содержания 2,3-ДФГ в клетке. Количественной мерой этой функции является Р50.
Предполагают, что АТФ связана с гемоглобином и оказывает некоторое влияние на процесс отдачи кислорода тканям. Однако основное и ведущее значение имеет 2,3-ДФГ, который считается ответственным за кислород- транспортную функцию эритроцитов. По мере увеличения сроков хранения крови происходит повышение сродства гемоглобина к кислороду, снижение концентрации АТФ и особенно быстрое снижение концентрации 2,3-ДФГ, а также величины P50j то есть понижение кислородтранспортной функции эритроцитов, в результате чего они не реализуют эту функцию в системе микроциркуляции.
При консервировании крови на содержание 2,3-ДФГ значительно влияет кислотно-щелочной статус: понижение pH крови в результате ее закисления при длительном хранении приводит к уменьшению концентрации 2,3-ДФГ в эритроцитах. Более высокий показатель pH ассоциирует с более высоким уровнем этого компонента. При переливании длительно хранившейся крови с повышенным сродством к кислороду больным с острой кро- вопотерей и кислородным голоданием состояние гипоксии может оказаться неустраненным. Экспериментально доказано и в клинике проверено, что уровень 2,3-ДФГ в эритроцитах может восстанавливаться до нормы как при добавлении веществ, усиливающих гликолиз, так и в организме реципиента в течение нескольких часов после переливания.
В процессе хранения крови происходят морфологические изменения в эритроцитах, что выражается в постепенных превращениях дискоидной формы (наиболее физиологически полноценной) в шиповидную, а под конец в сферическую — процесс, названный дискосферотрансформацией. По мере удлинения сроков хранения количество шиповидных форм увеличивается, что связано с наступающими изменениями в клеточной мембране, играющей важную роль в поддержании жизнедеятельности клетки в процессе консервирования, а также в плазме.
Мембрана при длительном хранении может становиться ригидной и приобретает форму сфероцита в результате процесса осмотического набухания. Разрыв ригидной мембраны сфероцита может происходить вследствие снижения способности клетки противостоять дальнейшему коллоидно-осмотическому набуханию (при превышении критического гемолитического объема) либо при микроциркуляции. Потеря сфероцитами гибкости и способности к деформированию (вытягиванию) затрудняет их прохождение через капилляры с меньшим диаметром, чем у эритроцита, и под давлением тока циркулирующей крови они подвергаются в капиллярах фрагментации или разрыву. Сферическую форму эритроцита поэтому принято считать соответствующей прегемолитической стадии. Установлена определенная корреляция между концентрацией АТФ в эритроцитах и их низкой приживаемостью. Форма двояковогнутого диска совпадает с физиологическим уровнем АТФ в эритроцитах. Важно отметить, что восстановление уровня АТФ в длительно хранившихся эритроцитах (например, при добавлении в кровь аденина) приводит к восстановлению обратимых форм эхиноцитов в диско- циты и повышает их приживаемость. Эти факты подтверждают ответственность АТФ за структурную целостность и жизнеспособность консервируемых эритроцитов.
Длительное хранение крови при 4 °С сопровождается прогрессивной потерей липидов мембраны, что приводит к понижению способности красных клеток изменять свою форму при прохождении через узкие капилляры.
Одной из основных и важнейших функций мембраны является регуляция проницаемости различных веществ и воды, столь существенная в защите эритроцитов при осмотических нагрузках. Она ответственна за проникновение в клетку субстратов питания из плазмы и из консервирующих растворов (глюкоза, электролиты, аминокислоты и др.) и за выведение из клетки продуктов распада, образующихся в процессе обмена веществ.
Мембрана обладает важной ферментной системой для осуществления процессов транспорта ионов. Для транспорта К+ и Na+ важное значение имеют АТФ-фазы.
Таким образом, функции регуляции ионной проницаемости мембраны тесно связаны с поддержанием энергетического потенциала клетки, а именно: нормального уровня АТФ, которая должна обеспечить энергию для работы калий-натриевого насоса, мембраны-механизма, регулирующего прохождение ионов натрия и калия, что является существенным фактором, контролирующим нормальный объем эритроцитов, поддерживающим интакгность мембраны и жизнеспособность эритроцитов.
В процессе длительного хранения при положительных температурах (4 °С) изменения, происходящие в осмотическом балансе, — снижение энзиматической активности в эритроците и накопление продуктов метаболизма — нарушают регуляцию проницаемости мембраны. Начинается пассивный выход калия во внеклеточную среду и пассивное проникновение в эритроциты натрия и воды, которые растягивают мембрану своим давлением изнутри.
При дальнейшем хранении превышение критического гемолитического объема завершается разрывом мембраны или образованием крупных пор и выбросом из клетки молекул гемоглобина. Таков механизм гемолиза эритроцитов цельной консервированной крови при длительном ее хранении в условиях положительных температур.
Два важных критерия определяют полноценность консервированной крови: длительная сохранность эритроцитов в жизнеспособном состоянии, за которое ответственна АТФ, и сохранение кислородтранспортной функции эритроцитов.
Выявление прямой зависимости жизнеспособности эритроцитов и кислородтранспортной функции гемоглобина от метаболизма эритроцита способствовало в последние годы разработке и созданию новых эффективных растворов для более длительного хранения консервированной крови.

Источник: А.Г.Румянцев, В.А.Аграненко, «Клиническая трансфузиология» 1997

А так же в разделе «  Глава II ОБЩАЯ ХАРАКТЕРИСТИКА ГЕМОТРАНСФУЗИОННЫХ СРЕД И МЕТОДЫ ИХ КОНСЕРВИРОВАНИЯ »