АНАЛИЗ РОДОСЛОВНОЙ

  Тщательно собрав данные о родословной, уточнив необходимые сведения о больных и обследовав нужных членов семьи, можно приступить к анализу родословной. При этом необходимо:
  1. установить, является ли данный признак или заболевание единичным в семье или имеется несколько случаев данной патологии (семейный характер);
  2. выделить лиц, подозрительных в отношении данного заболевания, и составить план их обследования и уточнения диагноза;
  3. определить тип наследования и выяснить, по какой линии — материнской или отцовской — идет передача заболевания;
  4. выявить лиц, нуждающихся в медико-генетическом консультировании, определить клинический прогноз для пробанда и его больных родственников с учетом особенностей заболевания и его генетической характеристики;
  5. разработать план лечения и профилактики, принимая во внимание индивидуальные и семейные особенности заболевания.

При анализе родословной врач может встретиться с генными и хромосомными болезнями, болезнями, в развитии которых участвуют как генетические, так и средо- вые факторы, «неизвестными» заболеваниями.
В связи с этим необходимо напомнить определение некоторых понятий и термины генетики, прежде всего «признак» и «ген». Понятие «признак» трактуется в генетике широко. Оно обозначает любые морфологические, физиологические, биохимические, патологические и другие свойства, процессы, реакции, в отношении которых существуют видовые, популяционные или индивидуальные различия между людьми. Вариации признаков обусловлены как генетическими, так и средовыми факторами. Термином «г е н» называют элементарную единицу наследственности, контролирующую развитие отдельного наследственного признака. Со времени работ Менделя о свойствах генов судят по их действию — передаче наследственных признаков от родителей детям. Для удобства анализа родословных гены обозначают буквами латинского алфавита.
Передача признаков в нисходящем ряду поколений свидетельствует о высокой стабильности генов. Однако в отдельных случаях происходит изменение гена, называемое генной мутацией. При мутации ген превращается в свой аллель. Аллели представляют собой видоизменения или, по образному выражению Н. П. Дубинина, «изотопы» одного и того же гена. Аллели контролируют альтернативные вариации того же признака. Их принято обозначать одной и той же буквой, но в разном написании. Например, обозначив ген пигментации буквой В, аллельный ему ген отсутствия пигмента в волосах обозначают буквой Ьу показывая тем самым, что ген b является результатом мутации гена В. Если в популяции данный ген мутировал несколько раз, то образуется серия видоизменений исходного гена, состоящая из нескольких аллелей. Примером м^жет служить ген /, контролирующий группы крови. Его аллель /А контролирует синтез антигена А, аллель j — антигена В, а аллель — отсутствие этих антигенов в эритроцитах. То же относится к генам, обусловливающим наследственные болезни. Например, ген глухоты s является аллелем гена нормального слуха S, а ген гемофилии h — аллелем гена нормального свертывания крови Я.
Развитие молекулярной генетики привело к открытию тонкого химического строения гена и механизма его действия. В химическом отношении ген является участком гигантской молекулы дезоксирибонуклеиновой кислоты (ДНК). Ее основные свойства: высокая стабильность строения, способность к самовоспроизведению и программированию биосинтеза специфических белков. Первичное действие каждого гена заключается в том, что он служит матрицей для синтеза одного определенного белка. Например, упоминавшийся выше ген пигментации В является матрицей для синтеза окислительного фермента, катализирующего превращение бесцветного хромогена (производное тирозина) в черный пигмент меланин. При мутации гена В возникает его аллель Ьу программирующий синтез измененного белка, который не обладает ферментными свойствами. У людей с геном b меланин не образуется, их кожа и волосы остаются бесцветными. Аналогично этому ген Я программирует синтез антигемофильного глобулина — белка, необходимого для нормального свертывания крови. Аллель этого гена h программирует синтез измененного белка, что приводит к патологии — гемофилии.
ь состав каждого гена наряду с участком, программирующим биосинтез белка (экзон), входит участок, который выполняет регуляторные функции (интрон). Значение интрона выяснено еще не полностью. Однако очевидно, что он играет определенную роль в экспрессии гена, реализации его действия в клетке.
Прогресс цитогенетики дал возможность изучить свойства генов на клеточном уровне. Установлено, что гены локализованы в хромосомах и каждый из них занимает в ней строго определенное место — локус. При этом в данном локусе может быть только один из аллелей определенного гена, например, либо В, либо b, но не другие гены, которые находятся или в другом локусе той же хромосомы, или в иной хромосоме. Следовательно, каждая хромосома отличается от других не только формой и строением, но, что важнее, локализованными в ней блоками генов. Полный одиночный комплект генов, обусловливающих всю совокупность наследственных признаков, содержится в гаплоидном наборе хромосом и называется геномом. Такой комплект генов присутствует в гаметах — спермиях и яйцеклетках. В оплодотворенном яйце (зиготе) и во всех соматических клетках имеется двойной набор хромосом и, следовательно, двойной комплект генов, один из которых получен через яйцеклетку матери, а второй — через спермий отца. Это относится ко всем генам, локализованным в аутосомах (в отличие от генов половых хромосом, о которых будет сказано ниже).
Организмы, имеющие в диплоидном (двойном) наборе два одинаковых аллеля данного гена (например ВВ или bb), называются гомозиготными, а при различных аллелях (ВЬ) —гетерозиготными. У гетерозигот аллели могут взаимодействовать различным образом. Обычно один из них доминирует (преобладает) над другим — рецессивным аллелем, который у гетерозигот не проявляет своего действия.
Рассмотрим основные типы наследования моногенных болезней. 

Источник: Лильин Е. Т., Богомазов Е. А., Гофман-Кадошни- ков П. Б., «Генетика для врачей.» 1990

А так же в разделе «  АНАЛИЗ РОДОСЛОВНОЙ »