РАЗРАБАТЫВАЕМЫЕ МЕТОДЫ ЛЕЧЕНИЯ


Рассмотрим возможности методов лечения, которые еще не вышли из стен лабораторий и находятся на той или иной стадии экспериментальной проверки.
Анализируя выше принципы заместительной терапии, мы упоминали о том, что распространение этого метода борьбы с наследственной патологией ограничено из-за невозможности целенаправленной доставки необходимого биохимического субстрата к органам, тканям или к клеткам-мишеням. Как и любой чужеродный белок, вводимые «лекарственные» ферменты вызывают иммунологическую реакцию, ведущую, в частности, к инактивации фермента. В связи с этим пытались вводить ферменты под защитой неких искусственных синтетических образований (микрокапсул), что особого успеха не имело. Между тем защита молекулы белка от окружающей среды с помощью искусственной или естественной мембраны остается на повестке дня. С этой целью в последние годы исследуют липо- сомы — искусственно созданные липидные частицы, состоящие из каркаса (матрикса) и липидной (т. е. не вызывающей иммунологических реакций) мембраны-оболочки. Матрикс можно заполнить любым биополимерным соединением, например, ферментом, который будет хорошо защищен от контакта с иммунокомпетентными клетками организма внешней мембраной. После введения в организм липосомы проникают внутрь клеток, где под действием эндогенных липаз оболочка липосом разрушается и содержащийся в них фермент, структурно и функционально не поврежденный, вступает в соответствующую реакцию. Той же цели — транспорту и пролонгации действия необходимого клеткам белка — посвящены и эксперименты с так называемыми эритроцит- ными тенями: инкубируют эритроциты больного в гипотонической среде с добавлением белка, предназначенного для транспорта. Далее восстанавливают изотоничность среды, после чего часть эритроцитов будет содержать белок, присутствующий в среде. Нагруженные белком эритроциты вводят в организм, где происходит его доставка органам и тканям с одновременной защитой.
Среди иных разрабатываемых методов лечения наследственных болезней особое внимание не только медицинской, но и широкой общественности привлекает генная инженерия. Речь идет о непосредственном влиянии на мутантный ген, о его исправлении. Путем бирпсии тканей или взятия крови можно получить клетки больного, в которых при культивировании можно заменить или исправить мутантный ген, а затем аутоимплантировать (что исключило бы иммунологические реакции) эти клетки в организм больного. Такое восстановление утраченной функции генома возможно с помощью трансдук- ции — захвата и переноса вирусами (фагами) части генома (ДНК) здоровой клетки-донора в пораженную клетку-реципиент, где этот участок генома начинает нормально функционировать. Возможность такого исправления генетической информации in vitro с последующим внесением ее в организм была доказана в ряде экспериментов, что и обусловило исключительный интерес к генной инженерии.
В настоящее время, как отмечает В. Н. Калинин (1987), вырисовывается два подхода к исправлению наследственного материала, основанные на генно-инженерных представлениях. Согласно первому из них (гено- терапия), от больного может быть получен клон клеток, в геном которых вводится фрагмент ДНК, содержащий нормальный аллель мутантного гена. После аутотрансплантации можно ожидать выработки в организме нормального фермента и, следовательно, ликвидации патологической симптоматики болезни. Второй подход (генохи- рургия) связан с принципиальной возможностью извлечения оплодотворенной яйцеклетки из материнского организма и замены в ее ядре аномального гена на клонированный «здоровый». В этом случае после аутоимплантации яйцеклетки развивается плод, не только практически здоровый, но и лишенный возможности передачи патологической наследственности в дальнейшем.
Однако перспективы использования генной инженерии для лечения наследственных болезней обмена веществ оказываются весьма отдаленными, как только мы рассмотрим некоторые из возникающих проблем. Перечислим проблемы, не требующие специальных генетических и биохимических знаний [Анненков Г. А., 1975], решение которых пока остается Делом будущего.
Введение «здоровой» ДНК в клетку-реципиент без одновременного удаления «поврежденного» гена или участка ДНК будет означать увеличение содержания ДНК в этой клетке, т. е. ее избыток. Между тем избыток ДНК ведет к хромосомным болезням. Не скажется ли избыток ДНК на функционировании генома в целом? Кроме того, некоторые генетические дефекты реализуются не на клеточном, а на организменном уровне, т. е. при условии центральной регуляции. В этом случае успехи генной инженерии, достигнутые в опытах на изолированной культуре, могут не сохраниться при «возвращении» клеток в организм. Отсутствие методов точного контроля за мерой вносимой генетической информации может привести к «передозировке» конкретного гена и вызвать дефект с обратным знаком: например, лишний ген инсулина при диабете приведет к развитию гиперинсули- немии. Вносимый ген должен быть встроен не в любое, а в определенное место хромосомы, в противном случае могут быть нарушены межгенные связи, что скажется на считывании наследственной информации.
Метаболизм клетки с патологической наследственностью приспособлен к атипичным условиям. Стало быть, встроенный «нормальный» ген, а вернее, его продукт — нормальный фермент — может не найти в клетке необходимую метаболическую цепь и ее отдельные составляющие — ферменты и кофакторы, не говоря уже о том, что продукция клеткой нормального, но по сути «чужеродного» белка может вызвать массивные аутоиммунные реакции.
Наконец, в генной инженерии пока не найдено метода, который исправлял бы геном половых клеток; это означает возможность значительного накопления вредных мутаций в будущих поколениях при фенотипически здоровых родителях.
Таковы вкратце основные теоретические возражения против использования генной инженерии для лечения наследственных обменных нарушений. Абсолютное большинство наследственных болезней обмена веществ — репо
зультат крайне редких мутаций. Разработка для каждой из этих зачастую уникальных ситуаций соответствующего метода генной инженерии — дело, не только крайне «громоздкое», экономически невыгодное, но и сомнительное с точки зрения времени начала специфического лечения. Для большинства часто встречающихся врожденных «ошибок» метаболизма разработаны методы диетотерапии, дающие при правильном использовании прекрасные результаты. Мы отнюдь не стремимся доказать бесперспективность генной инженерии для лечения наследственных болезней или дискридитировать ее как метод решения многих общебиологических проблем. Сказанное касается прежде всего замечательных успехов генной инженерии в пренатальной диагностике наследственных болезней различного генеза. Основное достоинство при этом состоит в определении конкретного нарушения структуры ДНК, т. е. «обнаружении первичного гена, являющегося причиной заболевания» [Калинин В. Н., 1987].
Принципы ДНК-диагностики относительно просты для понимания. Первая из процедур (блоттинг) заключается в возможности с помощью специфических ферментов — рестрикционных эндонуклеаз — разделить молекулу ДНК на многочисленные фрагменты, каждый из которых может содержать искомый патологический ген. На втором этапе этот ген выявляют с помощью специальных «зондов» ДНК — синтезированных последовательностей нуклеотидов, меченных радиоактивным изотопом. Этот «зондаж» может быть осуществлен различными путями, описанными, в частности, D. Cooper и J. Schmidtke (1986). Для иллюстрации остановимся лишь на одном из них. С помощью генно-инженерных методов синтезируют небольшую (до 20) нормальную последовательность нуклеотидов, перекрывающую место предполагаемой мутации, и метят ее радиоактивным изотопом. Затем эту последовательность пытаются гибридизировать с ДНК, выделенной из клеток конкретного плода (или индивида). Очевидно, что гибридизация произойдет успешно, если тестируемая ДНК содержит нормальный ген; при наличии мутантного гена, т. е. аномальной последовательности нуклеотидов в цепи выделенной ДНК, гибридизация не произойдет. Возможности ДНК-диагностики на современном этапе демонстрируют табл. 10—13, взятые нами из работы D. Cooper и J. Schmidtke (1987).
Таким образом, в ряде вопросов медицинской прак-
Таблица 10. Прямой анализ наследственных болезней с использованием генных проб для выявления внутригенного дефекта

тики генная инженерия по мере своего развития и совершенствования, безусловно, добьется еще более впечатляющих успехов. Теоретически она остается единственным методом этиологического лечения разнообразных заболеваний человека, в генезе которых тем или иным образом «представлена» наследственность. В борьбе со смертностью и инвалидностью от наследственных болезней нужно использовать все силы и средства медицины. 

Источник: Лильин Е. Т., Богомазов Е. А., Гофман-Кадошни- ков П. Б., «Генетика для врачей.» 1990

А так же в разделе «РАЗРАБАТЫВАЕМЫЕ МЕТОДЫ ЛЕЧЕНИЯ »