Рекомбинантные субъединичные вакцины


Прогресс в области получения большого количества протективных вирусных антигенов достигнут благодаря использованию технологии рекомбинантной ДНК.
Рекомбинантные субъединичные вакцины готовят из очищенных вирусных белков, экспрессируемых клонированными вирусными генами. Гены, кодирующие протективные антигены, вводят в подходящую плазмиду, которую клонируют в экспрессирующую клеточную систему. Используемыми эукариотическими системами экспрессии являются дрожжи, клетки насекомых и клетки различных млекопитающих. Преимуществом дрожжей является возможность крупномасштабного выращивания. Первой вакциной, приготовленной экспрессией клонированного гена в дрожжах, была вакцина против гепатита В человека.
Если иммуногенный вирусный белок должен быть в гликозилированной форме, необходимо использовать эукариотическую экспрессирующую систему. Экспрессированный таким образом белок является гликозилированным и имеет соответствующую конформацию. Продукция вирусных белков в прокариотической системе была менее успешной [958].
Преимущество клеток насекомых заключается в простой технологии, связанной с культурами клеток мотылька (или гусеницы), способными дать большое количество вирусного белка в результате инфицирования бакуловирусами, несущими ген (гены) протективного белка (белков) интересующего вируса. Промотор гена, кодирующего белок бакуловирусного полиэдроза, является настолько сильным, что продукт интересующего вирусного гена, введенный внутрь гена бакуловирусного полиэдрина, может составлять половину всего протеина инфицированных клеток моли или гусеницы.
Преимущество клеток млекопитающих по сравнению с клетками низших эукариотов заключается в том, что в них более точно (правильно) осуществляется посттрансляционный процессинг, включая гликозилирование и секрецию вирусных белков.
При выборе клеточной системы для экспрессии рекомбинантных вирусных антигенов важную роль играют такие критерии, как эффективность, безопасность и технологичность. Прежде всего необходимо определить идентичность экспрессируемого протективного антигена и экономическую целесообразность его производства. В случае использования перевиваемых линий клеток, необходимо, чтобы экспрессируемый вирусный белок легко отделялся от клеточной ДНК из-за ее возможной онкогенной опасности. Секреция вирусных гликопротеинов в среду облегчает их очистку, которая не должна сопровождаться нарушением конформации нейтрализующих эпитопов. Необходимо также определить целесообразность добавления адъюванта с целью усиления иммуногенности очищенного белка.
В прокариотической системе E.coli были экспрессированы капсидный белок VP1 вируса ящура, поверхностный антиген вируса гепатита В, гемагглютинин вируса гриппа А, поверхностный гликопротеин G вируса бешенства, гликопротеин D вируса простого герпеса и белки, кодируемые различными сегментами генома ротавируса [1131]. Количество рекомбинантного белка VP1 вируса ящура, синтезированного в E.coli, достигало 17% от общей массы белка. Такой белок в сочетании с адъювантом вызывал иммунитет у животных [222, 1131, 1219].
Гликопротеин D вируса простого герпеса, экспрессированный в E.coli в негли- козилированном виде, вызывал образование нейтрализующих антител у кроликов. Это указывало на то, что гликозилирование поверхностных вирусных гликопротеинов данного вируса не является необходимым условием для выработки нейтрализующих антител. Однако негликозилированный белок гемагглютинина вируса гриппа А, синтезированный в той же системе, не вызывал у кроликов и мышей антител, нейтрализующих вирус, или задержку гемагглютинации. Гликопротеин вируса бешенства, полученный подобным способом, не был гликолизированным и, несмотря наполноразмерность, не индуцировал иммунитету мышей [1131].
Рекомбинантный гликопротеин Е и неструктурный белок NS-1 вируса японского энцефалита, синтезированные в E.coli и усиленные адъювантом, вызывали образование ВН-антител и устойчивость к заражению у мышей после четырехкратного введения [1443]. Рекомбинантный белок, представленный С-концевой частью гликопротеина Е и N-концевой частью NS-1 вируса денге, экспрессированный в E.coli, защищал мышей от летальной инфекции гомологичным вирусом [1442]. Скармливание мышам рекомбинантных сальмонелл, экспрессирующих антигены вируса гепатита В, сопровождалось образованием специфических антител в высоком титре [1382]. Возможно, это был первый шаг на пути создания энтеральной вакцины против гепатита В и других вирусных болезней.
Несмотря на отдельные положительные результаты при использовании прокариотической системы экспрессии, возник ряд проблем, основными из которых явились низкий выход и агрегация рекомбинантного белка [1167].
Накоплены данные, свидетельствующие о преимуществах использования эукариотических систем экспресии, в частности дрожжей.
Производство вирусных антигенов в дрожжах представляет пример эффективного использования гетерологичной системы для разработки технологии изготовления противовирусных вакцин. Дрожжи не только обладают способностью к росту с высокой плотностью популяции в суспензионной культуре в фер- ментарах, но и обеспечивают специфические модификации транслируемых рекомбинантных белков, чего не происходит в прокариотической системе. В итоге при использовании дрожжей оказалось возможным получить рекомбинантный вирусный белок с высокой специфической иммунологической активностью. Наглядным примером изготовления «дрожжевой» вакцины служит вакцина против гепатита В. Цель была достигнута трансформацией дрожжей рекомбинантной экспрессионной плазмидой, содержащей ген поверхностного антигена вируса гепатита В.
Современная технология рекомбинантной ДНК пришла на смену устаревшей рутинной технологии изготовления вакцины против одного из наиболее опасных и широко распространенных заболеваний людей. Ранние вакцины против гепатита В были необычными и представляли собой очищенный поверхностный антиген вируса (HBsAg), полученный из плазмы крови человека, хронического носителя вируса. Это была уникальная в своем роде вакцина.
Рекомбинантные дрожжевые клетки продуцируют поверхностный антиген вируса гепатита В, агрегированный в многомерные сферические частицы диаметром 22 нм, идентичные натуральному поверхностному HBsAg антигену, обнаруживаемому в плазме крови хронически инфицированных людей.
HBsAg синтезировался в дрожжах в количестве, достаточном для промышленного изготовления вакцины. Антиген, выделенный из разрушенных дрожжей, очищают скоростным центрифугированием в сочетании с иммунной хроматографией.
Сравнительный анализ физико-химических, морфологических и иммуно- генных свойств HBsAg, полученного генно-инженерным способом и выделенного из плазмы крови носителей вируса, продемонстрировал близость их характеристик. Однако поверхностный антиген вируса гепатита В, продуцируемый дрожжами, оказался негликозилированным. С целью усиления иммуногенности в рекомбинантные вакцины были включены, помимо HBsAg, белки, кодируемые зонами npe-S ДНК вируса гепатита В.
Рекомбинантные культуры дрожжей, в отличие от плазмы носителей антигена вируса, практически представляют неограниченный источник вирусного антигена для изготовления вакцинного препарата. Протективная активность рекомбинантной вакцины не отличается от активности вакцины, полученной из плазмы крови доноров [1196]. В дрожжах экспрессирован G-белок вируса бешенства в нативном виде [1130].
Основной протективный белок VP2 вируса бурсальной болезни кур образовывался в высокоиммуногенной форме в рекомбинантных дрожжах. Рекомби
нантный белок VP2 после однократного внутримышечного введения (-50 мкг) в составе эмульгированной вакцины вызывал у кур вируснейтрализующие антитела в таком же титре, как после введения живого вируса. Трансовариальная передача антител обеспечивала выраженный иммунитет у потомства и вселяла надежду на практическое применение такой вакцины [655]. Аналогичные результаты получены с рекомбинантной субъединичной вакциной, содержащей белок VP2, экспрессированный в бакуловирусной системе [1244, 1701].
Создание эффективной вакцины против гепатита С связано с многими проблемами, и в первую очередь, с отсутствием возможности размножения вируса в культуре клеток, а так же генетическим разнообразием и высоким уровнем мута- бильности вируса. Вакцины, основанные на гликопротеинах Е1 и Е2, вызывали кратковременное образование антител у обезьян к этим антигенам и требовали частой бустеризации. Привитые животные были защищены против внутривенного заражения малыми дозами вирулентного вируса гомологичной антигенности, но не против заражения большой дозой вируса или заражения гетерологич- ным штаммом вируса. Возможно, что для усиления протективного эффекта требуется индукция специфических цитотоксических лимфоцитов к консервативным эпитопам неструктурных белков [989].
Возрастающий интерес к изготовлению компонентных вакцин на основе технологии рекомбинантной ДНК привлек внимание к использованию клеток животных в качестве систем, экспрессирующих рекомбинантные вирусные белки. В качестве таких систем часто использовали трансформированные линии клеток, в том числе яичника китайского хомяка (линия СНО), а также клетки обезьян, трансформированные вирусом SV-40 (линия COS). Такую систему использовали для наработки антигенов, вируса гепатита В и др. Продуцируемые в рекомбинантных клетках СНО вирусоподобные частицы, содержащие поверхностный антиген вируса гепатита В, имели диаметр 22 нм, плотность в хлориде цезия 1,21 г/см3 и не отличались от частиц, обнаруживаемых в плазме крови инфицированных носителей. Культуральные свойства клеток СНО позволяли рассчитывать на их промышленное использование в качестве продуцентов иммуно- генного материала [934].
Клетки гепатобластомы человека (линия HepG2), трансфицированные полноразмерной ДНК вируса гепатита В, в большом количестве секретировали антигены Е, С и S [1320]. Мембранный гликопротеин (340/220) вируса Эпштейн- Барр длительное время экспрессировался в фибрабластоподобных клетках мышей, трансформированных вирусом папилломы крупного рогатого скота [528].
Белок Е1 вируса краснухи был экспрессирован в клетках COS после трансфекции клеток кДНК в составе вектора обезьяньего вируса SV-40. Этот белок антигенно подобен белку, экспрессируемому в клетках, зараженных вирусом краснухи [1146].
Генно-инженерным методом получена клеточная линия, продуцирующая пустые капсиды парвовируса В-19 человека. Продукция полых капсидов была равной или превышала формирование вирионов в инфицированных клетках ко
стного мозга (1000—2000 капсидов на клетку). Трансфекция не влияла на скорость роста клеток-продуцентов [867]. Капсиды парвовируса В-19, экспрессированные в бакуловирусной системе, по антигенным и иммуногенным свойствам были подобны нативным вирионам [868]. Испытание рекомбинантной вакцины на серонегативных добровольцах дало положительные результаты [527]. Получен рекомбинантный вирус бешенства, стабильно экспрессирующий гликопротеин оболочки др 160 вируса иммунодефицита человека 1. Этот вирус вызывал у мышей образование ВН-антител в высоком титре (1:800) и мог служить прообразом рекомбинантной вакцины против ВИЧ-1 [1386].
Живые вакцины против краснухи весьма эффективны, однако их реактоген- ность, особенно для беременных женщин, побудила к созданию новых средств специфической профилактики краснухи. Новая стратегия основывалась на создании компонентных вакцин на основе рекомбинантной ДНК-технологии. Получена субъединичная вакцина, которая включает белок Е1, содержащий главные нейтрализующие эпитопы [921].
Клетки куриного эмбриона, трансфицированные геном HN вируса Ньюкаслской болезни в составе вектора из вируса саркомы Рауса, стабильно экспрессировали белок HN на клеточной поверхности; адсорбировали эритроциты кур и проявляли нейраминидазную активность. Трансфицированные HN-клетки проявляли резистентность к суперинфекции вирусами ньюкаслской болезни и гриппа, связывающимися с рецепторами, содержащими сиаловую кислоту, но были чувствительны к заражению вирусом везикулярного стоматита [1100].
Протективный поверхностный гликопротеин D вируса простого герпеса, экспрессируемый и секретируемый клетками СНО, вызывал синтез нейтрализующих антител и защиту мышей от заражения летальной дозой вируса [1131]. Обработка морских свинок гликопротеином вместе с адъювантом предупреждала развитие латентной инфекции ганглиев и оказывала терапевтический эффект, снижая количество и тяжесть вирусиндуцированных повреждений.
Субъединичные вакцины, содержащие HN и F гликопротеины вируса ПГ-3, получены из очищенного вируса или в культуре клеток насекомых, инфицированных рекомбинантным бакуловирусом, экспрессирующим HN и F белки, или химерным вирусом.
Рекомбинантная субъединичная вакцина против лейкоза кошек в качестве антигена содержала негликозилированный гликопротеин оболочки вируса лейкемии кошек подгруппы А. Такой рекомбинантный белок включал белок оболочки (гликопротеин 70 кД) и первые 34 аминокислоты трансмембранного белка Р15Е. Вакцина представляла собой очищенный белок, адсорбированный на гидроокиси алюминия, и содержала сапонин. У вакцинированных кошек образовывались вируснейтрализующие антитела и развивалась анамнестическая реакция на введение вируса лейкемии кошек. Иммунизированные животные были защищены от вирусной инфекции [1007].
Постоянные линии клеток имеют важные преимущества в качестве субстратов для производства рекомбинантных субъединичных вакцин. Поскольку такие
клетки являются естественным хозяином вирусов млекопитающих и птиц, синтезируемые в них рекомбинантные вирусные белки во всех отношениях подобны природным вирусным антигенам. Выделение и очистка таких антигенов отличаются быстротой и экономичностью. Наработка протективных вирусных антигенов в эукариотических системах, по-видимому, является наиболее приемлемым процессом, так как вирусные антигены экспрессируются на клеточной поверхности в сочетании с антигенами гистосовместимости хозяина, обеспечивая, тем самым, наряду с гуморальным иммунным ответом, и эффективный клеточный ответ [1131]. Основной недостаток таких клеточных систем — потенциально существующая опасность их возможной онкогенности. По мнению авторитетных специалистов, клиническая оценка безопасности антигенов, полученных при использовании клеточных линий и рекомбинантных векторов, содержащих фрагменты трансформирующих вирусов, является условной [1131, 1167]. Однако существующие методы очистки антигенов от клеточной и вирусной ДНК, а также других продуктов метаболизма, дают возможность получить препараты, отвечающие существующим требованиям, и практически снимают ограничения с использования постоянных линий клеток.
Для экспрессии чужеродных вирусных белков широко используют перевиваемые линии клеток насекомых под контролем бакуловируса в качестве вектора. Таким путем были экспрессированы НА вируса гриппа, протективный антиген вируса гепатита Е, а так же белки других вирусов. Клетки млекопитающих широко используют для получения протективных вирусных белков, которые пригодны для приготовления субъединичных вакцин. Этот способ может быть использован для приготовления вакцин, когда вирус не размножается в культуре клеток (вирус гепатита В, парвовирус В19, вирус Норволк), или в случае, когда изготовление цельновирионной инактивированной вакцины представляет биологическую опасность (некоторые лентивирусы, филовирусы, хантавирусы и аренавирусы человека).
Для крупных вирусов, таких как вирусы герпеса, которые кодируют около 10 протективных антигенов, может оказаться необходимым использовать для вакцины смесь нескольких экспрессированных белков [326]. 

Источник: В.А. Сергеев, Е.А. Непоклонов, Т.И. Алипер, «Вирусы и вирусные вакцины» 2007

А так же в разделе «Рекомбинантные субъединичные вакцины »